Modified Version of Roulette Selection for Evolution Algorithms ? The Fan Selection

نویسندگان

  • Adam Slowik
  • Michal Bialko
چکیده

In this paper modified version of roulette selection for evolution algorithms the fan selection, is presented. This method depends on increase of survive probability of better individuals at the expense of worse individuals. Test functions chosen from literature are used for determination of quality of proposed method. Results obtained for fan selection are compared with results obtained using roulette selection and elitist selection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Roulette-wheel selection via stochastic acceptance

Roulette-wheel selection is a frequently used method in genetic and evolutionary algorithms or in modeling of complex networks. Existing routines select one of N individuals using search algorithms of O(N) or O(logN) complexity. We present a simple roulette-wheel selection algorithm, which typically has O(1) complexity and is based on stochastic acceptance instead of searching. We also discuss ...

متن کامل

Multi-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect

This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance.  First the problem is encoded with a...

متن کامل

Adaptive and Personalizing Learning Sequence Using Modified Roulette Wheel Selection Algorithm

Prior literature in the field of adaptive and personalized learning sequence in e-learning have proposed and implemented various mechanisms to improve the learning process such as individualization and personalization, but complex to implement due to expensive algorithmic programming and need of extensive and prior data. The main objective of personalizing learning sequence is to maximize learn...

متن کامل

Congestion estimation of router input ports in Network-on-Chip for efficient virtual allocation

Effective and congestion-aware routing is vital to the performance of network-on-chip. The efficient routing algorithm undoubtedly relies on the considered selection strategy. If the routing function returns a number of more than one permissible output ports, a selection function is exploited to choose the best output port to reduce packets latency. In this paper, we introduce a new selection s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004